Documentation

RealClosedField.OrderedAlgebra

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Field.exists_isOrderedAlgebra_of_projection {F : Type u_1} {K : Type u_2} [Field F] [LinearOrder F] [IsStrictOrderedRing F] [Field K] [Algebra F K] (π : K →ₗ[F] F) ( : ∀ (x : K), x 00 < π (x * x)) :
    theorem isSumSq_of_isSquare {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (hL : IsAdjoinRootMonic' L (Polynomial.X ^ 2 + 1)) (h : ∀ (x : L), IsSquare x) (a : K) (ha : IsSumSq a) :
    theorem lift_poly_span_nonneg_isSquare {F : Type u_1} {K : Type u_2} [Field F] [LinearOrder F] [IsStrictOrderedRing F] [Field K] [Algebra F K] {f : Polynomial F} {r : K} (hAdj : IsIntegralUniqueGen r f) {x : K} (hx : x Submodule.span (Subsemiring.nonneg F) {x : K | IsSquare x}) :
    ∃ (g : Polynomial F), (Polynomial.aeval r) g = x g Submodule.span (↥(Subsemiring.nonneg F)) ((fun (x : Polynomial F) => x * x) '' {g : Polynomial F | g.natDegree < f.natDegree})
    theorem minus_one_notMem_span_nonneg_isSquare_mod_f {F : Type u_1} [Field F] [LinearOrder F] [IsStrictOrderedRing F] {f : Polynomial F} (hf₁ : f.Monic) (hf₂ : Irreducible f) (hf₃ : Odd f.natDegree) {g : Polynomial F} (hg : g Submodule.span (↥(Subsemiring.nonneg F)) ((fun (x : Polynomial F) => x * x) '' {g : Polynomial F | g.natDegree < f.natDegree})) :
    ¬f g + 1
    theorem odd_deg_ordered {F : Type u_1} {K : Type u_2} [Field F] [LinearOrder F] [IsStrictOrderedRing F] [Field K] [Algebra F K] (h_rank : Odd (Module.finrank F K)) :