Documentation

RealClosedField.Algebra.Order.Ring.Ordering.Adjoin

Let R be a commutative ring, and let P be a preordering on R.

Main results #

References #

theorem Subsemiring.IsPreordering.closure_insert {R : Type u_1} [CommRing R] {P : Subsemiring R} [P.IsPreordering] {a : R} (hx : -1closure (insert a P)) :
theorem Subsemiring.IsPreordering.mem_closure_insert {R : Type u_1} [CommRing R] {P : Subsemiring R} [P.IsPreordering] {a x : R} :
x closure (insert a P) yP, zP, x = y + a * z
theorem Subsemiring.IsPreordering.neg_one_notMem_closure_insert {R : Type u_1} [CommRing R] (P : Subsemiring R) [P.IsPreordering] (a : R) (h : ∀ (x y : R), x Py Px + (1 + y) * a + 1 0) :
-1closure (insert a P)
theorem Subsemiring.IsPreordering.neg_one_notMem_closure_insert_or_of_neg_mul_mem {R : Type u_1} [CommRing R] {P : Subsemiring R} [P.IsPreordering] {x y : R} (h : -(x * y) P) :
-1closure (insert x P) -1closure (insert y P)
theorem Subsemiring.IsPreordering.neg_one_notMem_closure_insert_of_neg_notMem {F : Type u_2} [Field F] {P : Subsemiring F} [P.IsPreordering] {a : F} (ha : -aP) :
-1closure (insert a P)

If F is a field, P is a preordering on F, and a is an element of P such that -a ∉ P, then -1 is not in the semiring generated by P and a.

theorem Subsemiring.IsPreordering.exists_le_and_mem_or_mem {R : Type u_1} [CommRing R] (P : Subsemiring R) [P.IsPreordering] (x y : R) (h : -(x * y) P) :
QP, Q.IsPreordering (x Q y Q)
theorem Subsemiring.IsPreordering.exists_le_isOrdering_and_mem {R : Type u_1} [CommRing R] {P : Subsemiring R} [P.IsPreordering] {a : R} (h : -1closure (insert a P)) :
OP, O.IsOrdering a O
theorem Subsemiring.IsPreordering.exists_lt_isOrdering {R : Type u_1} [CommRing R] (P : Subsemiring R) [P.IsPreordering] (a : R) (hp : aP) (hn : -aP) :
Q > P, Q.IsOrdering