Let R be a commutative ring, and let P be a preordering on R.
Main results #
Subsemiring.IsPreordering.exists_le: ifa ∉ P, thenPextends to a preordering containing eitheraor-a.Subsemiring.IsPreordering.exists_le_isOrdering:Pextends to an ordering.Subsemiring.maximal_isPreordering_iff_maximal_isOrdering: an ordering is maximal as an ordering if and only if it is maximal as a preordering.Subsemiring.maximal_isPreordering_iff_isOrdering: over a field, orderings are precisely maximal preorderings.
References #
- An introduction to real algebra, by T.Y. Lam. Rocky Mountain J. Math. 14(4): 767-814 (1984). lam_1984
theorem
Subsemiring.IsPreordering.closure_insert
{R : Type u_1}
[CommRing R]
{P : Subsemiring R}
[P.IsPreordering]
{a : R}
(hx : -1 ∉ closure (insert a ↑P))
:
(closure (insert a ↑P)).IsPreordering
theorem
Subsemiring.IsPreordering.mem_closure_insert
{R : Type u_1}
[CommRing R]
{P : Subsemiring R}
[P.IsPreordering]
{a x : R}
:
theorem
Subsemiring.IsPreordering.neg_one_notMem_closure_insert
{R : Type u_1}
[CommRing R]
(P : Subsemiring R)
[P.IsPreordering]
(a : R)
(h : ∀ (x y : R), x ∈ P → y ∈ P → x + (1 + y) * a + 1 ≠ 0)
:
theorem
Subsemiring.IsPreordering.neg_one_notMem_closure_insert_or_of_neg_mul_mem
{R : Type u_1}
[CommRing R]
{P : Subsemiring R}
[P.IsPreordering]
{x y : R}
(h : -(x * y) ∈ P)
:
theorem
Subsemiring.IsPreordering.neg_one_notMem_closure_insert_of_neg_notMem
{F : Type u_2}
[Field F]
{P : Subsemiring F}
[P.IsPreordering]
{a : F}
(ha : -a ∉ P)
:
If F is a field, P is a preordering on F, and a is an element of P such that -a ∉ P,
then -1 is not in the semiring generated by P and a.
theorem
Subsemiring.IsPreordering.exists_le_and_mem_or_mem
{R : Type u_1}
[CommRing R]
(P : Subsemiring R)
[P.IsPreordering]
(x y : R)
(h : -(x * y) ∈ P)
:
∃ Q ≥ P, Q.IsPreordering ∧ (x ∈ Q ∨ y ∈ Q)
theorem
Subsemiring.IsOrdering.of_maximal_isPreordering
{R : Type u_1}
[CommRing R]
{O : Subsemiring R}
(max : Maximal IsPreordering O)
:
theorem
Subsemiring.IsPreordering.exists_le_isOrdering
{R : Type u_1}
[CommRing R]
(P : Subsemiring R)
[P.IsPreordering]
:
∃ O ≥ P, O.IsOrdering
theorem
Subsemiring.IsPreordering.exists_le_isOrdering_and_mem
{R : Type u_1}
[CommRing R]
{P : Subsemiring R}
[P.IsPreordering]
{a : R}
(h : -1 ∉ closure (insert a ↑P))
:
∃ O ≥ P, O.IsOrdering ∧ a ∈ O
theorem
Subsemiring.IsPreordering.exists_le_isOrdering_and_mem_or_neg_mem
{R : Type u_1}
[CommRing R]
(P : Subsemiring R)
[P.IsPreordering]
(a : R)
:
theorem
Subsemiring.IsPreordering.exists_lt_isOrdering
{R : Type u_1}
[CommRing R]
(P : Subsemiring R)
[P.IsPreordering]
(a : R)
(hp : a ∉ P)
(hn : -a ∉ P)
:
∃ Q > P, Q.IsOrdering
theorem
Subsemiring.maximal_isOrdering_iff_maximal_isPreordering
{R : Type u_1}
[CommRing R]
{O : Subsemiring R}
:
theorem
Subsemiring.maximal_isPreordering_iff_isOrdering
{F : Type u_2}
[Field F]
{O : Subsemiring F}
: