Ring orderings #
Let R be a commutative ring. We define orderings and preorderings on R
as predicates on Subsemiring R.
Definitions #
IsOrdering: an ordering is a subsemiringOsuch thatO ∪ -O = Rand the supportO ∩ -OofOforms a prime ideal.IsPreordering: a preordering is a subsemiring that contains all squares, but not-1.
All orderings are preorderings.
References #
- An introduction to real algebra, by T.Y. Lam. Rocky Mountain J. Math. 14(4): 767-814 (1984). lam_1984
class
Subsemiring.IsOrdering
{R : Type u_1}
[CommRing R]
(S : Subsemiring R)
extends S.toAddSubmonoid.HasMemOrNegMem, S.toAddSubmonoid.support.IsPrime :
An ordering O on a ring R is a subsemiring of R such that O ∪ -O = R and
the support O ∩ -O of O forms a prime ideal.
- mem_or_mem' {x y : R} : x * y ∈ S.toAddSubmonoid.support → x ∈ S.toAddSubmonoid.support ∨ y ∈ S.toAddSubmonoid.support
Instances
A preordering on a ring R is a subsemiring of R that contains all squares, but not -1.
- neg_one_notMem : -1 ∉ S
Instances
theorem
Subsemiring.mem_of_isSumSq
{R : Type u_1}
[CommRing R]
(S : Subsemiring R)
[S.IsPreordering]
{x : R}
(hx : IsSumSq x)
:
@[simp]
theorem
Subsemiring.mul_self_mem
{R : Type u_1}
[CommRing R]
(S : Subsemiring R)
[S.IsPreordering]
(x : R)
:
@[simp]
theorem
Subsemiring.pow_two_mem
{R : Type u_1}
[CommRing R]
(S : Subsemiring R)
[S.IsPreordering]
(x : R)
:
theorem
Subsemiring.IsPreordering.of_support_neq_top
{R : Type u_1}
[CommRing R]
{S : Subsemiring R}
[S.toAddSubmonoid.HasMemOrNegMem]
(h : S.toAddSubmonoid.support ≠ ⊤)
:
instance
Subsemiring.instIsPreorderingOfIsOrdering
{R : Type u_1}
[CommRing R]
(S : Subsemiring R)
[S.IsOrdering]
: