Documentation

RealClosedField.Algebra.Order.Ring.Ordering.Defs

Ring orderings #

Let R be a commutative ring. We define orderings and preorderings on R as predicates on Subsemiring R.

Definitions #

All orderings are preorderings.

References #

An ordering O on a ring R is a subsemiring of R such that O ∪ -O = R and the support O ∩ -O of O forms a prime ideal.

Instances

    A preordering on a ring R is a subsemiring of R that contains all squares, but not -1.

    • mem_of_isSquare {x : R} (hx : IsSquare x) : x S
    • neg_one_notMem : -1S
    Instances
      theorem Subsemiring.mem_of_isSumSq {R : Type u_1} [CommRing R] (S : Subsemiring R) [S.IsPreordering] {x : R} (hx : IsSumSq x) :
      x S
      @[simp]
      theorem Subsemiring.mul_self_mem {R : Type u_1} [CommRing R] (S : Subsemiring R) [S.IsPreordering] (x : R) :
      x * x S
      @[simp]
      theorem Subsemiring.pow_two_mem {R : Type u_1} [CommRing R] (S : Subsemiring R) [S.IsPreordering] (x : R) :
      x ^ 2 S