Documentation

RealClosedField.Algebra.Ring.Subsemiring.Support

Supports of subsemirings #

Let R be a ring, and let S be a subsemiring of R. If S - S = S, then the support of S forms an ideal.

Main definitions #

theorem Subsemiring.eq_zero_of_mem_of_neg_mem {R : Type u_1} [Ring R] (S : Subsemiring R) [S.toAddSubmonoid.IsPointed] {x : R} (hx₁ : x S) (hx₂ : -x S) :
x = 0
theorem Subsemiring.eq_zero_of_mem_of_neg_mem₂ {R : Type u_1} [Ring R] (S : Subsemiring R) [S.toAddSubmonoid.IsPointed] {x : R} (hx₁ : x S) (hx₂ : -x S) :
x = 0

Alias of Subsemiring.eq_zero_of_mem_of_neg_mem.

theorem Subsemiring.mem_or_neg_mem {R : Type u_1} [Ring R] (S : Subsemiring R) [S.toAddSubmonoid.IsSpanning] (a : R) :
a S -a S

Typeclass to track when the support of a subsemiring forms an ideal.

Instances
    theorem Subsemiring.hasIdealSupport_iff {R : Type u_1} [Ring R] {S : Subsemiring R} :
    S.HasIdealSupport ∀ (x a : R), a S-a Sx * a S -(x * a) S
    theorem Subsemiring.smul_mem {R : Type u_1} [Ring R] (S : Subsemiring R) [S.HasIdealSupport] (x : R) {a : R} (h₁a : a S) (h₂a : -a S) :
    x * a S
    theorem Subsemiring.neg_smul_mem {R : Type u_1} [Ring R] (S : Subsemiring R) [S.HasIdealSupport] (x : R) {a : R} (h₁a : a S) (h₂a : -a S) :
    -(x * a) S

    The support S ∩ -S of a subsemiring S of a ring R, as an ideal.

    Equations
    Instances For
      theorem Subsemiring.mem_support {R : Type u_1} [Ring R] {S : Subsemiring R} [S.HasIdealSupport] {x : R} :
      x S.support x S -x S
      theorem Subsemiring.coe_support {R : Type u_1} [Ring R] (S : Subsemiring R) [S.HasIdealSupport] :
      S.support = S -S
      @[simp]
      theorem Subsemiring.comap_toSubmonoid' {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R →+* S) (Q : Subsemiring S) :
      @[simp]
      theorem Subsemiring.map_toSubmonoid' {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R →+* S) (P : Subsemiring R) :
      @[simp]
      theorem Subsemiring.support_inf {R : Type u_2} [Ring R] (S T : Subsemiring R) [S.HasIdealSupport] [T.HasIdealSupport] :
      (ST).support = S.supportT.support
      @[simp]
      theorem Subsemiring.support_sInf {R : Type u_2} [Ring R] {s : Set (Subsemiring R)} (h : Ss, S.HasIdealSupport) :
      (sInf s).support = sInf {I : Ideal R | ∃ (S : Subsemiring R) (hS : S s), I = S.support}
      theorem Subsemiring.HasIdealSupport.sSup {R : Type u_2} [Ring R] {s : Set (Subsemiring R)} (hsn : s.Nonempty) (hsd : DirectedOn (fun (x1 x2 : Subsemiring R) => x1 x2) s) (h : Ss, S.HasIdealSupport) :
      @[simp]
      theorem Subsemiring.support_sSup {R : Type u_2} [Ring R] {s : Set (Subsemiring R)} (hsn : s.Nonempty) (hsd : DirectedOn (fun (x1 x2 : Subsemiring R) => x1 x2) s) (h : Ss, S.HasIdealSupport) :
      (sSup s).support = sSup {I : Ideal R | ∃ (S : Subsemiring R) (hS : S s), I = S.support}
      instance Subsemiring.instHasIdealSupportComap {R : Type u_2} {R' : Type u_3} [Ring R] [Ring R'] (f : R →+* R') (S' : Subsemiring R') [S'.HasIdealSupport] :
      @[simp]
      theorem Subsemiring.comap_support {R : Type u_2} {R' : Type u_3} [Ring R] [Ring R'] (f : R →+* R') (S' : Subsemiring R') [S'.HasIdealSupport] :
      @[simp]
      theorem Subsemiring.map_support {R : Type u_2} {R' : Type u_3} [Ring R] [Ring R'] {f : R →+* R'} {S : Subsemiring R} [S.HasIdealSupport] (hf : Function.Surjective f) (hsupp : RingHom.ker f S.support) :

      Equivalence between subsemirings with zero support in a ring R and partially ordered ring structures on R.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Equivalence between maximal subsemirings with zero support in a ring R and linearly ordered ring structures on R.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For