Documentation

RealClosedField.Algebra.Order.Ring.Ordering.Basic

We prove basic properties of orderings on rings, and show that they are preserved under certain operations.

References #

theorem Subsemiring.IsPreordering.of_le {R : Type u_1} [CommRing R] {P : Subsemiring R} [P.IsPreordering] {Q : Subsemiring R} (hPQ : P Q) (hQ : -1Q) :
theorem Subsemiring.IsPreordering.unitsInv_mem {R : Type u_1} [CommRing R] {P : Subsemiring R} [P.IsPreordering] {a : Rˣ} (ha : a P) :
a⁻¹ P
theorem Subsemiring.IsPreordering.isOrdering_iff {R : Type u_1} [CommRing R] {P : Subsemiring R} [P.IsPreordering] :
P.IsOrdering ∀ (a b : R), -(a * b) Pa P b P
instance Subsemiring.instIsPreorderingMin {R : Type u_1} [CommRing R] (P₁ P₂ : Subsemiring R) [P₁.IsPreordering] [P₂.IsPreordering] :
(P₁P₂).IsPreordering
theorem Subsemiring.IsPreordering.sInf {R : Type u_1} [CommRing R] {S : Set (Subsemiring R)} (hSn : S.Nonempty) (hS : sS, s.IsPreordering) :
theorem Subsemiring.IsPreordering.sSup {R : Type u_1} [CommRing R] {S : Set (Subsemiring R)} (hSn : S.Nonempty) (hSd : DirectedOn (fun (x1 x2 : Subsemiring R) => x1 x2) S) (hS : sS, s.IsPreordering) :
instance Subsemiring.instIsOrderingComap {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) (P' : Subsemiring S) [P'.IsOrdering] :
instance Subsemiring.instIsPreorderingComap {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) (P' : Subsemiring S) [P'.IsPreordering] :
theorem Subsemiring.IsPreordering.inv_mem {F : Type u_1} [Field F] {P : Subsemiring F} [P.IsPreordering] {a : F} (ha : a P) :