Documentation

RealClosedField.Prereqs

theorem mem_sup_of_mem_left {R : Type u_1} [Semiring R] {a b : Subsemiring R} {x : R} :
x ax ab
theorem mem_sup_of_mem_right {R : Type u_1} [Semiring R] {a b : Subsemiring R} {x : R} :
x bx ab
theorem Ideal.irreducible_of_isMaximal_span_singleton {R : Type u_1} [CommRing R] [IsDomain R] {m : R} (hm : m 0) (hmax : (span {m}).IsMaximal) :
theorem Ideal.Quotient.irreducible_of_isField {R : Type u_1} [CommRing R] [IsDomain R] {m : R} (hm : m 0) (hf : IsField (R span {m})) :
@[simp]
@[simp]
@[simp]
theorem Polynomial.natDegree_X_sub_C_sq_add_C_sq {R : Type u_1} [CommRing R] [NoZeroDivisors R] [Nontrivial R] (a b : R) :
((X - C a) ^ 2 + C b ^ 2).natDegree = 2
@[simp]
theorem Polynomial.monic_X_sub_C_sq_add_C_sq {R : Type u_1} [CommRing R] [NoZeroDivisors R] [Nontrivial R] (a b : R) :
((X - C a) ^ 2 + C b ^ 2).Monic
theorem Polynomial.has_root_of_odd_natDegree_imp_not_irreducible {F : Type u_1} [Field F] (h : ∀ (f : Polynomial F), Odd f.natDegreef.natDegree 1¬Irreducible f) {f : Polynomial F} (hf : Odd f.natDegree) :
∃ (x : F), f.IsRoot x
theorem Polynomial.has_root_of_monic_odd_natDegree_imp_not_irreducible {F : Type u_1} [Field F] (h : ∀ (f : Polynomial F), f.MonicOdd f.natDegreef.natDegree 1¬Irreducible f) {f : Polynomial F} (hf : Odd f.natDegree) :
∃ (x : F), f.IsRoot x
theorem estimate {F : Type u_1} [Field F] [LinearOrder F] [IsStrictOrderedRing F] {f : Polynomial F} (hdeg : f.natDegree 0) {x : F} (hx : 1 x) :
x ^ (f.natDegree - 1) * (f.leadingCoeff * x - f.natDegree * (Finset.image (fun (x : ) => |f.coeff x|) (Finset.range f.natDegree)).max' ) Polynomial.eval x f
theorem eventually_pos {F : Type u_1} [Field F] [LinearOrder F] [IsStrictOrderedRing F] {f : Polynomial F} (hdeg : f.natDegree 0) (hf : 0 < f.leadingCoeff) :
∃ (y : F), ∀ (x : F), y < x0 < Polynomial.eval x f
theorem estimate2 {F : Type u_1} [Field F] [LinearOrder F] [IsStrictOrderedRing F] {f : Polynomial F} (hdeg : Odd f.natDegree) {x : F} (hx : x -1) :
Polynomial.eval x f x ^ (f.natDegree - 1) * (f.leadingCoeff * x + f.natDegree * (Finset.image (fun (x : ) => |f.coeff x|) (Finset.range f.natDegree)).max' )
theorem eventually_neg {F : Type u_1} [Field F] [LinearOrder F] [IsStrictOrderedRing F] {f : Polynomial F} (hdeg : Odd f.natDegree) (hf : 0 < f.leadingCoeff) :
∃ (y : F), x < y, Polynomial.eval x f < 0
theorem sign_change {F : Type u_1} [Field F] [LinearOrder F] [IsStrictOrderedRing F] {f : Polynomial F} (hdeg : Odd f.natDegree) :
∃ (x : F) (y : F), Polynomial.eval x f < 0 0 < Polynomial.eval y f
theorem Module.finrank_dvd_finrank (F : Type u_1) (K : Type u_2) (A : Type u_3) [Semiring F] [Ring K] [AddCommGroup A] [Module F K] [Module K A] [Module F A] [IsScalarTower F K A] [Nontrivial A] [StrongRankCondition F] [StrongRankCondition K] [Free F K] [Free K A] [Module.Finite K A] [NoZeroSMulDivisors K A] :
finrank F K = finrank F A / finrank K A
theorem Module.finrank_dvd_finrank' (F : Type u_1) (K : Type u_2) (A : Type u_3) [Ring F] [Ring K] [AddCommMonoid A] [Module F K] [Module K A] [Module F A] [IsScalarTower F K A] [Nontrivial K] [StrongRankCondition F] [StrongRankCondition K] [Free F K] [Free K A] [Module.Finite F K] [NoZeroSMulDivisors F K] :
finrank K A = finrank F A / finrank F K
theorem IsGalois.exists_intermediateField_of_pow_prime_dvd {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] [FiniteDimensional K L] [IsGalois K L] {p n : } (hp : Nat.Prime p) (hn : p ^ n Module.finrank K L) :
∃ (M : IntermediateField K L), Module.finrank (↥M) L = p ^ n
theorem IsGalois.exists_intermediateField_of_card_pow_prime_mul {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] [FiniteDimensional K L] [IsGalois K L] {p n a : } (hp : Nat.Prime p) (hn : Module.finrank K L = p ^ n * a) {m : } (hm : m n) :
∃ (M : IntermediateField K L), Module.finrank K M = p ^ m * a
theorem Sylow.exists_subgroup_le_card_pow_prime_of_card_pow_prime {G : Type u_1} [Group G] {m n p : } (hp : Nat.Prime p) {H : Subgroup G} (hH : Nat.card H = p ^ n) (hm : m n) :
H'H, Nat.card H' = p ^ m
theorem IsGalois.exists_intermediateField_ge_card_pow_prime_of_card_pow_prime {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] [FiniteDimensional K L] [IsGalois K L] {m n p : } (hp : Nat.Prime p) {M : IntermediateField K L} (hM : Module.finrank (↥M) L = p ^ n) (hm : m n) :
NM, Module.finrank (↥N) L = p ^ m
theorem IsGalois.exists_intermediateField_ge_card_pow_prime_mul_of_card_pow_prime_mul {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] [FiniteDimensional K L] [IsGalois K L] {p n a : } (hp : Nat.Prime p) (hL : Module.finrank K L = p ^ n * a) {m m' : } {M : IntermediateField K L} (hM : Module.finrank K M = p ^ m * a) (hm'₁ : m m') (hm'₂ : m' n) :
NM, Module.finrank K N = p ^ m' * a
theorem IsAlgClosed.isSquare {k : Type u_1} [Field k] [IsAlgClosed k] (x : k) :
theorem IsAlgClosed.of_finiteDimensional_imp_finrank_eq_one (k : Type u) [Field k] (H : ∀ (l : Type u) [inst : Field l] [inst_1 : Algebra k l] [FiniteDimensional k l], Module.finrank k l = 1) :