Documentation

RealClosedField.RealClosedField

class IsRealClosed (R : Type u_1) [Field R] extends IsSemireal R :

A field R is real closed if

  1. R is real
  2. for all x ∈ R, either x or -x is a square
  3. every odd-degree polynomial has a root.
Instances

    A real closure of an ordered field is a real closed ordered algebraic extension.

    Instances

      Sufficient conditions to be real closed #

      theorem IsRealClosed.mk' {R : Type u} [Field R] [IsSemireal R] (h₁ : ∀ {x : R}, ¬IsSquare xIsSquare (-x)) (h₂ : ∀ {f : Polynomial R}, f.MonicOdd f.natDegreef.natDegree 1¬Irreducible f) :
      theorem IsRealClosed.of_isAdjoinRoot_i_or_finrank_eq_one {R : Type u} [Field R] (hR : ¬IsSquare (-1)) (h : ∀ (K : Type u) [inst : Field K] [inst_1 : Algebra R K] [FiniteDimensional R K], IsAdjoinRootMonic' K (Polynomial.X ^ 2 + 1) Module.finrank R K = 1) :
      theorem IsRealClosed.of_linearOrderedField {R : Type u} [Field R] [LinearOrder R] [IsStrictOrderedRing R] (isSquare_of_nonneg : ∀ {x : R}, 0 xIsSquare x) (exists_isRoot_of_odd_natDegree : ∀ {f : Polynomial R}, Odd f.natDegree∃ (x : R), f.IsRoot x) :
      theorem IsRealClosed.of_linearOrderedField' {R : Type u} [Field R] [LinearOrder R] [IsStrictOrderedRing R] (h₁ : ∀ {x : R}, 0 xIsSquare x) (h₂ : ∀ {f : Polynomial R}, f.MonicOdd f.natDegreef.natDegree 1¬Irreducible f) :
      theorem IsRealClosed.of_intermediateValueProperty {R : Type u} [Field R] [LinearOrder R] [IsStrictOrderedRing R] (h : ∀ {f : Polynomial R} {x y : R}, x y0 Polynomial.eval x fPolynomial.eval y f 0zSet.Icc x y, Polynomial.eval z f = 0) :
      theorem IsRealClosed.of_maximal_isSemireal {R : Type u} [Field R] [IsSemireal R] (h : ∀ (K : Type u) [inst : Field K] [IsSemireal K] [inst_2 : Algebra R K] [Algebra.IsAlgebraic R K], Module.finrank R K = 1) :
      theorem IsSquare.of_not_isSquare_neg {R : Type u} [Field R] [IsRealClosed R] {x : R} (hx : ¬IsSquare (-x)) :
      theorem IsSquare.of_isSumSq {R : Type u} [Field R] [IsRealClosed R] {x : R} (hx : IsSumSq x) :
      theorem IsRealClosed.exists_eq_pow_of_odd {R : Type u} [Field R] [IsRealClosed R] (x : R) {n : } (hn : Odd n) :
      ∃ (r : R), x = r ^ n
      theorem IsRealClosed.exists_eq_pow_of_isSquare {R : Type u} [Field R] [IsRealClosed R] {x : R} (hx : IsSquare x) {n : } (hn : n > 0) :
      ∃ (r : R), x = r ^ n

      Classification of algebraic extensions of a real closed field #

      theorem IsRealClosed.rank_eq_one_of_isAdjoinRoot_i (R : Type u) [Field R] [IsRealClosed R] {K : Type u_1} [Field K] [Algebra R K] (hK : IsAdjoinRootMonic' K (Polynomial.X ^ 2 + 1)) (L : Type u_2) [Field L] [Algebra R L] [Algebra K L] [FiniteDimensional R L] [IsScalarTower R K L] :
      theorem IsRealClosed.irred_poly_classify {R : Type u} [Field R] [IsRealClosed R] {f : Polynomial R} (hf : f.Monic) :
      Irreducible f f.natDegree = 1 ∃ (a : R) (b : R), b 0 f = (Polynomial.X - Polynomial.C a) ^ 2 + Polynomial.C b ^ 2

      Alias of the forward direction of IsRealClosed.nonneg_iff_isSquare.

      theorem IsRealClosed.exists_eq_pow_of_nonneg {R : Type u} [Field R] [IsRealClosed R] [LinearOrder R] [IsStrictOrderedRing R] {x : R} (hx : 0 x) {n : } (hn : n > 0) :
      ∃ (r : R), x = r ^ n
      theorem IsRealClosed.intermediate_value_property {R : Type u} [Field R] [IsRealClosed R] [LinearOrder R] [IsStrictOrderedRing R] {f : Polynomial R} {x y : R} (hle : x y) (hx : 0 Polynomial.eval x f) (hy : Polynomial.eval y f 0) :
      zSet.Icc x y, Polynomial.eval z f = 0
      theorem IsRealClosed.TFAE_linearOrderedField (R : Type u) [Field R] [LinearOrder R] [IsStrictOrderedRing R] :
      [IsRealClosed R, ∀ (K : Type u) [inst : Field K] [inst_1 : LinearOrder K] [IsStrictOrderedRing K] [inst_3 : Algebra R K] [Algebra.IsAlgebraic R K] [IsOrderedModule R K], Module.finrank R K = 1, ∀ {f : Polynomial R} {x y : R}, x y0 Polynomial.eval x fPolynomial.eval y f 0zSet.Icc x y, Polynomial.eval z f = 0].TFAE
      theorem weak_Artin_Schreier {R : Type u_1} [Field R] (hR_char : ringChar R 2) (hR : Module.finrank R (AlgebraicClosure R) = 2) :