Documentation

RealClosedField.RealClosedField

Instances
    Instances
      theorem IsRealClosed.exists_eq_pow_of_odd {R : Type u} [Field R] [LinearOrder R] [IsStrictOrderedRing R] [IsRealClosed R] (x : R) {n : } (hn : Odd n) :
      ∃ (r : R), x = r ^ n
      theorem IsRealClosed.exists_eq_pow_of_nonneg {R : Type u} [Field R] [LinearOrder R] [IsStrictOrderedRing R] [IsRealClosed R] {x : R} (hx : x 0) {n : } (hn : n > 0) :
      ∃ (r : R), x = r ^ n

      Classification of algebraic extensions of a real closed field #

      theorem IsRealClosed.intermediate_value_property {R : Type u} [Field R] [LinearOrder R] [IsStrictOrderedRing R] [IsRealClosed R] {f : Polynomial R} {x y : R} (hle : x y) (hx : 0 Polynomial.eval x f) (hy : Polynomial.eval y f 0) :
      zSet.Icc x y, Polynomial.eval z f = 0

      Sufficient conditions to be real closed #

      theorem IsRealClosed.of_intermediateValueProperty {R : Type u} [Field R] [LinearOrder R] [IsStrictOrderedRing R] (h : ∀ {f : Polynomial R} {x y : R}, x y0 Polynomial.eval x fPolynomial.eval y f 0zSet.Icc x y, Polynomial.eval z f = 0) :
      theorem IsRealClosed.TFAE (R : Type u) [Field R] [LinearOrder R] [IsStrictOrderedRing R] :
      [IsRealClosed R, IsAdjoinRootMonic' (AlgebraicClosure R) (Polynomial.X ^ 2 + 1), ∀ (K : Type u) [inst : Field K] [inst_1 : LinearOrder K] [IsStrictOrderedRing K] [inst_3 : Algebra R K] [Algebra.IsAlgebraic R K] [IsOrderedModule R K], Module.finrank R K = 1, ∀ (K : Type u) [inst : Field K] [inst_1 : LinearOrder K] [IsStrictOrderedRing K] [inst_3 : Algebra R K] [Algebra.IsAlgebraic R K], Module.finrank R K = 1, ∀ {f : Polynomial R} {x y : R}, x y0 Polynomial.eval x fPolynomial.eval y f 0zSet.Icc x y, Polynomial.eval z f = 0].TFAE
      theorem IsSemireal.TFAE_RCF {F : Type u} [Field F] :
      [IsSemireal F (∀ (x : F), IsSquare x IsSquare (-x)) ∀ {f : Polynomial F}, Odd f.natDegree∃ (x : F), f.IsRoot x, IsAdjoinRootMonic' (AlgebraicClosure F) (Polynomial.X ^ 2 + 1), IsSemireal F ∀ (K : Type u) [inst : Field K] [IsSemireal K] [inst_2 : Algebra F K] [Algebra.IsAlgebraic F K], Module.finrank F K = 1].TFAE
      theorem weak_Artin_Schreier {R : Type u_1} [Field R] (hR_char : ringChar R 2) (hR : Module.finrank R (AlgebraicClosure R) = 2) :