Equations
Instances For
noncomputable def
IsSemireal.unique_isStrictOrderedRing
{F : Type u_1}
[Field F]
[IsSemireal F]
(h : ∀ (x : F), IsSumSq x ∨ IsSumSq (-x))
:
Unique { l : LinearOrder F // IsStrictOrderedRing F }
Equations
- IsSemireal.unique_isStrictOrderedRing h = { default := (Field.isOrderingLinearOrderEquiv F) ⟨Subsemiring.sumSq F, ⋯⟩, uniq := ⋯ }
Instances For
theorem
IsSemireal.isSumSq_or_isSumSq_neg
{F : Type u_1}
[Field F]
[IsSemireal F]
(h : ∃! x : LinearOrder F, IsStrictOrderedRing F)
(x : F)
:
theorem
IsStrictOrderedRing.unique_isStrictOrderedRing_iff
{F : Type u_1}
[Field F]
[LinearOrder F]
[IsStrictOrderedRing F]
:
theorem
IsSemireal.of_forall_adjoinRoot_i_isSquare
{F : Type u_1}
[Field F]
{K : Type u_2}
[Field K]
[Algebra F K]
(hK : IsAdjoinRootMonic' K (Polynomial.X ^ 2 + 1))
(h : ∀ (x : K), IsSquare x)
: