Documentation

RealClosedField.Algebra.Order.Field.IsSemireal

noncomputable def LinearOrder.ofIsSemireal (F : Type u_1) [Field F] [IsSemireal F] :
Equations
Instances For
    noncomputable def IsSemireal.unique_isStrictOrderedRing {F : Type u_1} [Field F] [IsSemireal F] (h : ∀ (x : F), IsSumSq x IsSumSq (-x)) :
    Equations
    Instances For
      theorem IsSemireal.of_forall_adjoinRoot_i_isSquare {F : Type u_1} [Field F] {K : Type u_2} [Field K] [Algebra F K] (hK : IsAdjoinRootMonic' K (Polynomial.X ^ 2 + 1)) (h : ∀ (x : K), IsSquare x) :