Instances
theorem
IsFormallyReal.eq_zero_of_mul_self
{R : Type u_1}
[AddCommMonoid R]
[Mul R]
[IsFormallyReal R]
{a : R}
:
theorem
IsFormallyReal.eq_zero_of_add_right
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
[IsFormallyReal R]
{s₁ s₂ : R}
(hs₁ : IsSumSq s₁)
(hs₂ : IsSumSq s₂)
(h : s₁ + s₂ = 0)
:
theorem
IsFormallyReal.eq_zero_of_add_left
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
[IsFormallyReal R]
{s₁ s₂ : R}
(hs₁ : IsSumSq s₁)
(hs₂ : IsSumSq s₂)
(h : s₁ + s₂ = 0)
:
theorem
isFormallyReal_of_eq_zero_of_eq_zero_of_mul_self_add
(R : Type u_1)
[NonUnitalNonAssocSemiring R]
(h : ∀ {s a : R}, IsSumSq s → a * a + s = 0 → a = 0)
:
instance
instIsFormallyRealOfIsStrictOrderedRing
{R : Type u_1}
[Ring R]
[LinearOrder R]
[IsStrictOrderedRing R]
: