Documentation

RealClosedField.Algebra.Order.Cone.Defs

Positive cones #

A positive cone in an (additive) group G is a submonoid C with zero support (i.e. C ∩ -C = 0).

A positive cone in a ring R is a subsemiring C with zero (additive) support. We re-use the predicate from the group case.

Positive cones correspond to ordered group structures: see Algebra.Order.Cone.Order.

Main definitions #

class AddSubmonoid.IsCone {G : Type u_1} [AddGroup G] (M : AddSubmonoid G) :

Typeclass for submonoids with zero support.

  • eq_zero_of_mem_of_neg_mem {x : G} (hx₁ : x M) (hx₂ : -x M) : x = 0
Instances
    class Submonoid.IsMulCone {G : Type u_1} [Group G] (M : Submonoid G) :

    Typeclass for submonoids with zero support.

    • eq_one_of_mem_of_inv_mem {x : G} (hx₁ : x M) (hx₂ : x⁻¹ M) : x = 1
    Instances
      theorem Submonoid.eq_one_of_mem_of_inv_mem₂ {G : Type u_1} {inst✝ : Group G} {M : Submonoid G} [self : M.IsMulCone] {x : G} (hx₁ : x M) (hx₂ : x⁻¹ M) :
      x = 1

      Alias of Submonoid.IsMulCone.eq_one_of_mem_of_inv_mem.

      theorem AddSubmonoid.eq_zero_of_mem_of_neg_mem₂ {G : Type u_1} {inst✝ : AddGroup G} {M : AddSubmonoid G} [self : M.IsCone] {x : G} (hx₁ : x M) (hx₂ : -x M) :
      x = 0
      @[simp]
      theorem AddSubmonoid.support_eq_bot {R : Type u_1} [Ring R] (M : AddSubmonoid R) [M.IsCone] :