theorem
Field.isIntegralUnique
{R : Type u_1}
{S : Type u_2}
[Field R]
[Ring S]
[Algebra R S]
{x : S}
(h₁ : IsIntegral R x)
:
IsIntegralUnique x (minpoly R x)
theorem
IsIntegrallyClosed.isIntegralUnique
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[IsDomain R]
[Algebra R S]
[IsDomain S]
[NoZeroSMulDivisors R S]
[IsIntegrallyClosed R]
{x : S}
(h₁ : IsIntegral R x)
:
IsIntegralUnique x (minpoly R x)
theorem
AdjoinRoot.isGenerator
{R : Type u_1}
[CommRing R]
(f : Polynomial R)
:
Algebra.IsGenerator R (root f)
theorem
AdjoinRoot.isIntegralUniqueGen
{R : Type u_1}
[CommRing R]
{f : Polynomial R}
(hf : f.Monic)
:
IsIntegralUniqueGen (root f) f
theorem
AdjoinRoot.isAdjoinRoot'
{R : Type u_1}
[CommRing R]
(f : Polynomial R)
:
IsAdjoinRoot' (AdjoinRoot f) f
theorem
AdjoinRoot.isAdjoinRootMonic'
{R : Type u_1}
[CommRing R]
{f : Polynomial R}
(hf : f.Monic)
:
IsAdjoinRootMonic' (AdjoinRoot f) f
theorem
Field.exists_isIntegralUniqueGen
(F : Type u_1)
(E : Type u_2)
[Field F]
[Field E]
[Algebra F E]
[FiniteDimensional F E]
[Algebra.IsSeparable F E]
:
∃ (x : E), IsIntegralUniqueGen x (minpoly F x)
theorem
Field.exists_isAdjoinRootMonic
(F : Type u_1)
(E : Type u_2)
[Field F]
[Field E]
[Algebra F E]
[FiniteDimensional F E]
[Algebra.IsSeparable F E]
:
∃ (f : Polynomial F), IsAdjoinRootMonic' E f
theorem
Algebra.adjoin.isIntegral
(R : Type u_1)
{S : Type u_2}
[CommRing R]
[Ring S]
[Algebra R S]
[Algebra.IsIntegral R S]
(s : Set S)
:
Algebra.IsIntegral R ↥(adjoin R s)
theorem
Algebra.adjoin.isIntegral_elem
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[Ring S]
[Algebra R S]
{x : S}
(hx : IsIntegral R x)
:
IsIntegral R ⟨x, ⋯⟩
theorem
Algebra.adjoin.isGenerator
(R : Type u_1)
{S : Type u_2}
[CommRing R]
[Ring S]
[Algebra R S]
(x : S)
:
IsGenerator R ⟨x, ⋯⟩
theorem
Algebra.adjoin.hasPrincipalKerAeval
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[Ring S]
[Algebra R S]
{x : S}
{g : Polynomial R}
(h : RingHom.ker (Polynomial.aeval x) = Ideal.span {g})
:
IsSimpleGenerator ⟨x, ⋯⟩ g
theorem
Algebra.adjoin.isIntegralUnique
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[Ring S]
[Algebra R S]
{x : S}
{g : Polynomial R}
(hx : IsIntegralUnique x g)
:
IsIntegralUnique ⟨x, ⋯⟩ g
theorem
Algebra.adjoin.isIntegralUniqueGen
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[Ring S]
[Algebra R S]
{x : S}
{g : Polynomial R}
(hx : IsIntegralUnique x g)
:
IsIntegralUniqueGen ⟨x, ⋯⟩ g