Documentation

RealClosedField.PrimitiveElement.Instances

theorem Field.isIntegralUnique {R : Type u_1} {S : Type u_2} [Field R] [Ring S] [Algebra R S] {x : S} (h₁ : IsIntegral R x) :
theorem Field.exists_isIntegralUniqueGen (F : Type u_1) (E : Type u_2) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [Algebra.IsSeparable F E] :
∃ (x : E), IsIntegralUniqueGen x (minpoly F x)
theorem Algebra.adjoin.isIntegral (R : Type u_1) {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] [Algebra.IsIntegral R S] (s : Set S) :
@[simp]
theorem Algebra.adjoin.aeval_minpoly (R : Type u_1) {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] (x : S) :
theorem Algebra.adjoin.isIntegral_elem {R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {x : S} (hx : IsIntegral R x) :
theorem Algebra.adjoin.isGenerator (R : Type u_1) {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] (x : S) :
theorem Algebra.adjoin.isIntegralUnique {R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {x : S} {g : Polynomial R} (hx : IsIntegralUnique x g) :
theorem Algebra.adjoin.isIntegralUniqueGen {R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {x : S} {g : Polynomial R} (hx : IsIntegralUnique x g) :