Finite preorders and finite sets in a preorder #
This file shows that non-empty finite sets in a preorder have minimal/maximal elements, and contrapositively that non-empty sets without minimal or maximal elements are infinite.
theorem
Set.Finite.exists_maximalFor'
{ι : Type u_1}
{α : Type u_2}
[LE α]
[IsTrans α LE.le]
(f : ι → α)
(s : Set ι)
(h : (f '' s).Finite)
(hs : s.Nonempty)
:
∃ (i : ι), MaximalFor (fun (x : ι) => x ∈ s) f i
A version of Finite.exists_maximalFor with the (weaker) hypothesis that the image of s
is finite rather than s itself.
theorem
Set.Finite.exists_minimalFor'
{ι : Type u_1}
{α : Type u_2}
[LE α]
[IsTrans α LE.le]
(f : ι → α)
(s : Set ι)
(h : (f '' s).Finite)
(hs : s.Nonempty)
:
∃ (i : ι), MinimalFor (fun (x : ι) => x ∈ s) f i
A version of Finite.exists_minimalFor with the (weaker) hypothesis that the image of s
is finite rather than s itself.