Documentation

Mathlib.Order.BoundedOrder.Lattice

Bounded lattices #

This file contains miscellaneous lemmas about lattices with top or bottom elements.

Common lattices #

Top, bottom element #

theorem top_sup_eq {α : Type u_1} [SemilatticeSup α] [OrderTop α] (a : α) :
a =
theorem bot_inf_eq {α : Type u_1} [SemilatticeInf α] [OrderBot α] (a : α) :
a =
theorem sup_top_eq {α : Type u_1} [SemilatticeSup α] [OrderTop α] (a : α) :
a =
theorem inf_bot_eq {α : Type u_1} [SemilatticeInf α] [OrderBot α] (a : α) :
a =
theorem bot_sup_eq {α : Type u_1} [SemilatticeSup α] [OrderBot α] (a : α) :
a = a
theorem top_inf_eq {α : Type u_1} [SemilatticeInf α] [OrderTop α] (a : α) :
a = a
theorem sup_bot_eq {α : Type u_1} [SemilatticeSup α] [OrderBot α] (a : α) :
a = a
theorem inf_top_eq {α : Type u_1} [SemilatticeInf α] [OrderTop α] (a : α) :
a = a
@[simp]
theorem sup_eq_bot_iff {α : Type u_1} [SemilatticeSup α] [OrderBot α] {a b : α} :
ab = a = b =
@[simp]
theorem inf_eq_top_iff {α : Type u_1} [SemilatticeInf α] [OrderTop α] {a b : α} :
ab = a = b =
theorem min_bot_left {α : Type u_1} [LinearOrder α] [OrderBot α] (a : α) :
theorem max_top_left {α : Type u_1} [LinearOrder α] [OrderTop α] (a : α) :
theorem min_bot_right {α : Type u_1} [LinearOrder α] [OrderBot α] (a : α) :
theorem max_top_right {α : Type u_1} [LinearOrder α] [OrderTop α] (a : α) :
theorem max_bot_left {α : Type u_1} [LinearOrder α] [OrderBot α] (a : α) :
max a = a
theorem min_top_left {α : Type u_1} [LinearOrder α] [OrderTop α] (a : α) :
min a = a
theorem max_bot_right {α : Type u_1} [LinearOrder α] [OrderBot α] (a : α) :
max a = a
theorem min_top_right {α : Type u_1} [LinearOrder α] [OrderTop α] (a : α) :
min a = a
theorem max_eq_bot {α : Type u_1} [LinearOrder α] [OrderBot α] {a b : α} :
max a b = a = b =
theorem min_eq_top {α : Type u_1} [LinearOrder α] [OrderTop α] {a b : α} :
min a b = a = b =
@[simp]
theorem min_eq_bot {α : Type u_1} [LinearOrder α] [OrderBot α] {a b : α} :
min a b = a = b =
@[simp]
theorem max_eq_top {α : Type u_1} [LinearOrder α] [OrderTop α] {a b : α} :
max a b = a = b =
theorem min_ne_bot {α : Type u_1} [LinearOrder α] [OrderBot α] {a b : α} (ha : a ) (hb : b ) :
min a b
theorem max_ne_top {α : Type u_1} [LinearOrder α] [OrderTop α] {a b : α} (ha : a ) (hb : b ) :
max a b

Induction on WellFoundedGT and WellFoundedLT #

theorem WellFoundedGT.induction_top {α : Type u_1} [Preorder α] [WellFoundedGT α] [OrderTop α] {P : αProp} (hexists : (M : α), P M) (hind : ∀ (N : α), N P N (M : α), M > N P M) :
P
theorem WellFoundedLT.induction_bot {α : Type u_1} [Preorder α] [WellFoundedLT α] [OrderBot α] {P : αProp} (hexists : (M : α), P M) (hind : ∀ (N : α), N P N (M : α), N > M P M) :
P